
NCSC-TG-w$
VERSION 1

NATIONAL COMPUTER SECURITY CENTER

MAR 9 14

R.ASREFERENCEC.

A GUIDE TO
UNDERSTANDING

COVERT
CHANNELANALYSIS

OF
TRUSTED SYSTEMS

20080226281
November 1993

Approved for Public Release:
Distribution Unlimited

NCSC-TG-030
Library No. S-240,572

Version 1

FOREWORD

A Guide to Understanding Covert Channel Analysis of Trusted Systems provides
a set of good practices related to covert channel analysis. We have written this
guide to help the vendor and evaluator communities understand the requirements
for covert channel analysis as described in the Department of Defense Trusted
Computer System Evaluation Criteria (TCSEC). In an effort to provide guidance, we
make recommendations in this technical guide that are not cited in the TCSEC.

This guide is the latest in a series of technical guidelines published by the National
Computer Security Center. These publications provide insight to the TCSEC require-
ments for the computer security vendor and technical evaluator. The goals of the
Technical Guideline Program are to discuss each feature of the TCSEC in detail and
to provide the proper interpretations with specific guidance.

The National Computer Security Center has established an aggressive program to
study and implement computer security technology. Our goal is to encourage the
widespread availability of trusted computer products for use by any organization
desiring better protection of its important data. One way we do this is by supporting
the Trusted Product Evaluation Program. This program focuses on the security fea-
tures of commercially produced and supported computer systems. We evaluate the
protection capabilities against the established criteria presented in the TCSEC. This
program, and an open and cooperative business relationship with the computer and
telecommunications industries, will result in the fulfillment of our country's informa-
tion systems security requirements. We resolve to meet the challenge of identifying
trusted computer products suitable for use in processing information that requires
protection.

I invite your suggestions for revising this technical guide. We will review this docu-
ment as the need arises.

Patrick R. (gher, 6K 7 November 1993
Director
National Computer Security Center

ACKNOWLEDGMENTS

The National Computer Security Center (NCSC) extends special recognition and
acknowledgment to Virgil D. Gligor as primary author and preparer of this document,
to Jonathan K. Millen for providing significant technical input for the covert channel
identification and bandwidth estimation sections, and to the first covert channel
working group of the NCSC (which met from 1989 to 1991) for providing most of the
material presented in Appendices A and B. Capt. James K. Goldston (USAF) and
Capt. James A. Muysenberg (USAF) are recognized for the development, editing,
and publication of this guide.

We wish to thank the many members of the computer security community who
enthusiastically gave their time and technical expertise in reviewing this guide and
providing valuable comments and suggestions.

TABLE OF CONTENTS

FO R EW O R D .. i

ACKNOW LEDGMENTS .. ii

1.0 INTRODUCTION ... 1
1.1 Background ... 1
1.2 P urpose .. 1
1.3 S cope .. 3
1.4 Control O bjective 3
1.5 Document Overview 4

2.0 COVERT CHANNEL DEFINITION AND CLASSIFICATION 5
2.1 Definition and Im plications 5
2.2 C lassification 14

2.2.1 Storage And Timing Channels 14
2.2.2 Noisy and Noiseless Channels 20
2.2.3 Aggregated versus Non-Aggregated Channels 21

2.3 Covert Channels and Flawed TCB Specifications 23

3.0 COVERT CHANNEL IDENTIFICATION 25
3.1 Sources of Information for Covert Channel Identification ... 25
3.2 Identification Methods 27

3.2.1 Syntactic Information-Flow Analysis 28
3.2.2 Addition of Semantic Components to Information-Flow Analysis 32
3.2.3 Shared Resource Matrix (SRM) Method 34
3.2.4 Noninterference Analysis 38

3.3 Potential versus Real Covert Channels 41
3.4 TCSEC Requirements and Recommendations 46

4.0 COVERT CHANNEL BANDWIDTH ESTIMATION 49
4.1 Factors Affecting the Bandwidth Computation 49

4.1.1 Noise and Delay 49
4.1.2 Coding and Symbol Distribution 49
4.1.3 TCB Primitive Selection 50
4.1.4 Measurements and Scenarios of Use 51
4.1.5 System Configuration and Initialization Dependencies 52

iii

OBJECT REUSE GUIDELINE

4.1.6 Aggregation of Covert Channels 52
4.1.7 Transient Covert Channels 53

4.2 Bandwidth Estimation Methods 53
4.2.1 Information-Theory-Based Method for

Channel-Bandwidth Estimation 53
4.2.2 Informal Method for Estimating Covert Channel Bandwidth 60
4.2.3 Differences Between the Two Methods .-................. 62

4.3 TCSEC Requirements and Recommendations 63

5.0 COVERT CHANNEL HANDLING 65
5.1 Elimination of Covert Channels 65
5.2 Bandwidth Limitation 67
5.3 Auditing the Use of Covert Channels 72
5.4 TCSEC Requirements and Recommendations 75
5.5 Handling Policies Based on Threat Analysis 76

6.0 COVERT CHANNEL TESTING 81
6.1 Testing Requirements and Recommendations 81
6.2 Test Documentation 81

7.0 SATISFYING THE TCSEC REQUIREMENTS FOR COVERT
CHANNEL ANALYSIS 83
7.1 Requirements for Class B2 83

7.1.1 Covert Channel Analysis 83
7.1.2 A udit .. 84
7.1.3 Design Documentation 85
7.1.4 Test Documentation 86

7.2 Additional Requirements for Class B3 86
7.2.1 Covert Channel Analysis 86
7.2.2 A , dit .. 87
7.2.3 Design Documentation 87
7.2.4 Test Documentation 87

7.3 Additional Requirements for Class Al 87

ACRONYMS AND ABBREVIATIONS 89

G LO SSA RY ... 91

REFERENCES ... 99

iv

TABLE OF CONTENTS

APPENDIX A ADDITIONAL EXAMPLES OF COVERT CHANNELS 109
A.1 Storage Channels 109

A.1.1 Table-Space Exhaustion Channels 109
A.1.2 Unmount of Busy File System Channels 110
A.1.3 Printer Attachment Channel 110

A.2 Tim ing Channels 111
A.2.1 I/O Scheduling Channels 113
A.2.2 I/O Operation Completion Channels 113
A.2.3 Memory Resource Management Channels 114

A.2.3.1 Data Page Pool Channels 114
A.2.3.2 Active Segment Table Channels 114

A.2.4 Device Controller Contention Channels 115
A.2.5 Exclusive Use of Segments Channels 115
A.2.6 Synchronization Primitive Contention Channels 115

APPENDIX B TOOLS FOR COVERT CHANNEL ANALYSIS 117
B.1 FDM Ina Flow Tool 117

B.1.1 M LS .. 118
B.1.2 SR M .. 118

8.2 GYPSY Flow Analyzer 118
B.3 EHDM M LS Tool 119
B.4 Source-code Analysis Tool 121

v

1.0 INTRODUCTION

1.1 BACKGROUND

The principal goal of the National Computer Security Center (NCSC) is to en-
courage the widespread availability of trusted computer systems. In support of this
goal, the NCSC created a metric, the Department of Defense (DoD) Trusted Com-
puter System Evaluation Criteria (TCSEC) [NCSC TCSEC], against which computer
systems could be evaluated.

The TCSEC was originally published on 15 August 1983 as CSC-STD-001 -83. In
December 1985, the Department of Defense adopted it, with a few changes, as a
Department of Defense Standard, DoD 5200.28-STD. DoD Directive 5200.28, Secu-
rity Requirements for Automated Information Systems (AISs) [DoD Directive], re-
quires the TCSEC be used throughout the Department of Defense. The TCSEC is
the standard used for evaluating the effectiveness of security controls built into DoD
AISs.

The TCSEC is divided into four divisions: D, C, B, and A. These divisions are or-
dered in a hierarchical manner, with the highest division (A) being reserved for sys-
tems providing the best available level of assurance and security. Within divisions C
and B are subdivisions known as classes, which are also ordered in a hierarchical
manner to represent different levels of security in these divisions.

1.2 PURPOSE

An important set of TCSEC requirements, which appears in classes B2 to Al, is
that of covert channel analysis (CCA). The objectives of CCA are:

* Identification of covert channels;

" Determination of covert channels' maximum attainable bandwidth;

* Handling covert channels using a well-defined policy consistent with the
TCSEC objectives; and

" Generation of assurance evidence to show that all channels are handled ac-
cording to the policy in force.

COVERT CHANNEL ANALYSIS GUIDELINE

To help accomplish these objectives, this guide (1) presents the relative merits
of covert channel identification methods and of the covert channel information sourc-
es, (2) recommends sound bandwidth determination and handling policies and
methods based on the TCSEC requirements, and (3) defines the types of evidence
that should be provided for handling assurance.

This document provides guidance to vendors on what types of analyses they
should carry out for identifying and handling covert channels in their systems, and to
system evaluators and accreditors on how to evaluate the manufacturer's analysis
evidence. Note, however, that the only measure of TCSEC compliance is the
TCSEC. This guide contains suggestions and recommendations derived from
TCSEC objectives but which are not required by the TCSEC.

This guide is not a tutorial introduction to any topic of CCA. Instead, it is a sum-
mary of analysis issues that should be addressed by operating systems designers,
evaluators, and accreditors to satisfy the requirements of the B2-A1 classes. Thus,
we assume the reader is an operating system designer or evaluator already familiar
with the notion of covert channels in operating systems. For this reader, the guide
defines a set of baseline requirements and recommendations for the analysis and
evaluation of covert channels. For the reader unfamiliar with CCA techniques used
to date, the following areas of further documentation and study may be useful:

* Mandatory security models and their interpretation in operating systems [Bell
and La Padula76, Biba77, Denning83, Gasser88, Honeywel185a, Honey-
wel185b, Luckenbaugh86, Rushby85, Walter74];

* Experience with covert channel identification reported in the literature to date
[Benzel84, Haigh87, He and Gligor90, Karger and Wray9l, Kemmerer83,
Lipner75, Loepere85, Millen76, Millen8l, Millen89b, Schaefer77, Tsai90,
Wray9l];

* Bandwidth estimation techniques using standard information theory
[Huskamp78, Millen89a, Shannon and Weaver64]; informal bandwidth estima-
tion techniques [Tsai and Gligor88];

* Covert channel handling techniques [Schaefer77, Shieh and Gligor90, Hu91];
and

2

INTRODUCTION

e Other TCSEC guidelines relevant to covert channel handling [NCSC Audit,

NCSC Testing].

The reader who is intimately familiar with CCA techniques may want to refer on-

ly to the sections on the "TCSEC Requirements, and Recommendations" (i.e., Sec-

tions 3.4, 4.3, and 6.1) and on "Satisfying the TCSEC Requirements for Covert

Channel Analysis" (Chapter 7).

1.3 SCOPE

This guide refers to covert channel identification and handling methods which

help assure that existent covert channels do not compromise a system's secure op-

eration. Although the guide addresses the requirements of systems supporting the

TCSEC mandatory policy, the analysis and handling methods discussed apply equal-

ly well to systems supporting any nondiscretionary (e.g., mandatory) security policy

[Saltzer and Schroeder75]. We make additional recommendations which we derive

from the stated objectives of the TCSEC. Not addressed are covert channels that

only security administrators or operators can exploit by using privileged (i.e., trusted)

software. We consider use of these channels an irrelevant threat because these ad-
ministrators, who must be trusted anyway, can usually disclose classified and sensi-

tive information using a variety of other more effective methods.

This guide applies to computer systems and products built with the intention of

satisfying TCSEC requirements at the B2-A1 levels. Although we do not explicitly ad-

dress covert channels in networks or distributed database management systems,

the issues we discuss in this guide are similar to the ones for those channels.

1.4 CONTROL OBJECTIVE

Covert channel analysis is one of the areas of operational assurance. As such,
its control objective is that of assurance. The assurance objective provided in
[NCSC TCSEC] is the following:

Systems that are used to process or handle classified or other sensitive informa-
tion must be designed to guarantee correct and accurate interpretation of the
security policy and must not distort the intent of that policy. Assurance must be
provided that correct implementation and operation of the policy exists through-
out the system's life-cycle.

3

COVERT CHANNEL ANALYSIS GUIDELINE

This objective affects CCA in two important ways. First, covert channels are the
result of an implementation of a nondiscretionary security policy at the operating
system level; therefore, depending on how this policy is implemented within a given
system, the resulting system will have fewer or more covert channels. Second, the
existence of covert channels poses a potential threat to the use of the mandatory
policy throughout the system's life cycle. Thus, the identification and handling of co-
vert channels represents an important tenet of mandatory policy support in B2-Al
systems.

1.5 DOCUMENT ORGANIZATION
This guide contains seven chapters, a glossary, a bibliography, and two appen-

dices. Chapter 2 reviews various definitions of covert channels, presents the policy
implications of those definitions, and classifies channels. Chapter 3 presents various
sources of covert channel information and identification methods, and discusses
their relative practical advantages. Chapter 4 describes bandwidth estimation and il-
lustrates a technique based on standard information theory that can be applied ef-
fectively in practice. Chapter 5 reviews various covert channel handling methods and
policies that are consistent with the TCSEC requirements. Chapter 6 discusses co-
vert channel testing and test documentation. Chapter 7 presents TCSEC require-
ments for CCA, and includes additional recommendations corresponding to B2-Al
evaluation classes. The glossary contains the definitions of the significant terms
used herein. The bibliography lists the references cited in the text. Appendix A cites
some examples of storage and timing channels. Appendix B describes the capabil-
ities of several tools for covert channel identification.

4

2.0 COVERT CHANNEL DEFINITION AND
CLASSIFICATION

In this chapter we provide several definitions of covert channels and discuss the
dependency of these channels on implementations of nondiscretionary access con-
trol policies (i.e., of policy models). Also, we classify channels using various aspects
of their scenarios of use.

2.1 DEFINITION AND IMPLICATIONS

The notion of covert communication was introduced in [Lampson73] and
analyzed in [Lipner75, Schaefer77, Huskamp78, Denning83, Kemmerer83], among
others. Several definitions for covert channels have been proposed, such as the fol-
lowing:

" Definition 1 - A communication channel is covert if it is neither designed nor
intended to transfer information at all. [Lampson73] (Note: Lampson's defini-
tion of covert channels is also presented in [Huskamp78].)

" Definition 2 - A communication channel is covert (e.g., indirect) if it is based
on "transmission by storage into variables that describe resource states."
[Schaefer77]

* Definition 3 - Covert channels "will be defined as those channels that are a
result of resource allocation policies and resource management implementa-
tion." [Huskamp78] (Note: The computing environment usually carries out re-
source allocation policies and implementation.)

* Definition 4 - Covert channels are those that "use entities not normally viewed
as data objects to transfer information from one subject to another."
[Kemmerer83]

The last three of the above definitions have been used successfully in various
security designs for new and retrofitted operating systems and in general covert
channel analyses. However, none of the above definitions brings out explicitly the
notion that covert channels depend on the type of nondiscretionary access control
(e.g., mandatory) policy being used and on the policy's implementation within a sys-
tem design. A new definition using these concepts can be provided that is consis-
tent with the TCSEC definition of covert channels, which states that a covert channel

5

COVERT CHANNEL ANALYSIS GUIDELINE

is "a communication channel that allows a process to transfer information in a man-
ner that violates the system's security policy."

0 Definition 5 - Given a nondiscretionary (e.g., mandatory) security policy model
M and its interpretation I(M) in an operating system, any potential communica-
tion between two subjects I(Sh) and I(Si) of I(M) is covert if and only if any
communication between the corresponding subjects Sh and Si of the model M
is illegal in M. [Tsai90]

The above definition has several consequences that help explain the relevance
(or lack thereof) of covert channels to different access control policies, as listed be-
low:

(1) Irrelevance of Discretionary Policy Models

The above definition implies that covert channels depend only on the interpreta-
tion of nondiscretionary security models. This means the notion of covert channels
is irrelevant to discretionary security models.

Discretionary policy models exhibit a vulnerability to Trojan Horse attacks re-
gardless of their interpretation in an operating system [NCSC DAC, Gasser88]. That
is, implementations of these models within operating systems cannot determine
whether a program acting on behalf of a user may release information on behalf of
that user in a legitimate manner. Information release may take place via shared
memory objects such as files, directories, messages, and so on. Thus, a Trojan
Horse acting on behalf of a user could release user-private information using legiti-
mate operating system requests. Although developers can build various mecha-
nisms within an operating system to restrict the activity of programs (and Trojan
Horses) operating on behalf of a user [Karger87], there is no general way, short of
implementing nondiscretionary policy models, to restrict the activity of such pro-
grams. Thus, given that discretionary models cannot prevent the release of sensitive
information through legitimate program activity, it is not meaningful to consider how
these programs might release information illicitly by using covert channels.

The vulnerability of discretionary policies to Trojan Horse and virus attacks does
not render these policies useless. Discretionary policies provide users a means to
protect their data objects from unauthorized access by other users in a relatively be-
nign environment (e.g., an environment free from software containing Trojan Horses

6

COVERT CHANNEL DEFINITION AND CLASSIFICATION

and viruses). The role of nondiscretionary policies is to confine the activity of pro-
grams containing Trojan Horses and viruses. In this context, the implementation of
mandatory policies suggested by the TCSEC, which forms an important subclass of
nondiscretionary security policies, must address the problem of unauthorized re-
lease of information through covert channels.

(2) Dependency on Nondiscretionary Security Policy Models

A simple example illustrates the dependency of covert channels on the security

policy model used. Consider a (nondiscretionary) separation model M that prohibits

any flow of information between two subjects Sh and Si. Communication in either di-
rection, from Sh to Si and vice versa, is prohibited. In contrast, consider a multilevel

security model, M', where messages from Sh to Si are allowed only if the security
level of Si dominates that of Sh. Here, some communication between Sh and Si may
be authorized in M'.

The set of covert channels that appears when the operating system implements
model M' may be a subset of those that appear when the same operating system
implements model M. The covert channels allowing information to flow from Sh to Si
in interpretations of model M could become authorized communication channels in

an interpretation of model M'.

The dependency of covert channels on the (nondiscretionary) security policy

models does not imply one can eliminate covert channels merely by changing the

policy model. Certain covert channels will exist regardless of the type of
nondiscretionary access control policy used. However, this dependency becomes
important in the identification of covert channels in specifications or code by auto-
mated tools. This is the case because exclusive reliance on syntactic analysis that
ignores the semantics of the security model implementation cannot avoid false il-

legal flows. We discuss and illustrate this in sections 3.2.2 and 3.3.

(3) Relevance to Both Secrecy and Integrity Models

In general, the notion of covert channels is relevant to any secrecy or integrity
model establishing boundaries meant to prevent information flow. Thus, analysis of

covert channels is equally important to the implementation of both nondiscretionary
secrecy (e.g., [Bell and La Padula76, Denning76, Denning77, Denning83, NCSC
TCSEC]) and integrity models (e.g., [Biba77, Clark and Wilson87]). In systems

7

COVERT CHANNEL ANALYSIS GUIDELINE

implementing nondiscretionary secrecy models, such as those implementing the
mandatory security policies of the TCSEC at levels B2-A1, CCA assures the discov-
ery of (hopefully all) illicit ways to output (leak) information originating from a specific
secrecy level (e.g., "confidential/personnel files/") to a lower, or incomparable, se-
crecy level (e.g., "unclassified/telephone directory/"). Similarly, in systems imple-
menting nondiscretionary integrity models, such analysis also assures the discovery
of (hopefully all) illicit ways to input information originating from a specific integrity
level (e.g., "valued/personnel registry!") to a higher, or incomparable, integrity level
(e.g., "essential/accounts payable/"). Without such assurances, one cannot imple-
ment appropriate countermeasures and, therefore, nondiscretionary security claims
become questionable at best. Figures 2-1(a) and 2-1(b) illustrate the notion of illegal
flows in specific nondiscretionary secrecy and nondiscretionary integrity models.

0 0
in)Kout out X,(in

SL(P1) -SL(P2) SL(P1)> <SL(P2) IL(P1) a IL(P2) IL(Pj) > IL(P 2)

(a) Legal and illegal flows in a (b) Legal and illegal flows in a
nondiscretionary secrecy system. nondiscretionary integrity system.
[Bell and La Padula76] [Biba77]

KEY:
legal flow _ "dominates" relation

... -- - illegal flow < 4 "neither dominates nor is
- -)(unsuccessful flow dominated by" relation

Figure 2-1. Legal and Illegal Flows

Example 0 - Relevance of Covert Channels to an Integrity Model

Figure 2-2 illustrates the relevance of covert channels to nondiscretionary integ-
rity models. Although this figure assumes a specific nondiscretionary integrity model
(i.e., Biba's [Biba77]), covert channels are equally relevant to all nondiscretionary in-
tegrity models. In Figure 2-2, a user logged in at the integrity level ILI invokes,

8

COVERT CHANNEL DEFINITION AND CLASSIFICATION

Accounts

Terminal 1 shell legal input Payable

IL illegal THIL, input,,.,

IL2 ,, initiate

o, illegal
user input >L(P) IL(P2)

Terminal 2 process

Trojan horse in untrusted application is receiver of illegal input.

KEY:

legal flow 2: "dominates" relation

.. ----- illegal flow

Figure 2-2. Relevance of Covert Channels to an Integrity Model

through a command processor (i.e., the shell), an accounts payable application that

prints payees' names on signed-check papers on a printer. The user is trusted to

operate at integrity level ILI and, by virtue of this trust, his input to the accounts pay-

able application is also classified at integrity level IL1. For similar reasons, both the

accounts payable application and the printer are activated at the current integrity lev-

el IL1. However, the accounts payable application (and, possibly, the shell) consists

of an untrusted set of programs.

The presence of untrusted software in the above example should not be sur-

prising. Most application programs running on trusted computing bases (TCBs) sup-

porting nondiscretionary secrecy consist of untrusted code. Recall that the ability to

run untrusted applications on top of TCBs without undue loss of security is one of

the major tenets of trusted computer systems. Insisting that all applications that

might contain a Trojan Horse, which could use covert channels affecting integrity, be

included within an integrity TCB is analogous to insisting that all applications that

might contain a Trojan Horse, which could use covert channels affecting secrecy, be

included within a secrecy TCB, and would be equally impractical.

If the untrusted accounts payable application contains a Trojan Horse, the Tro-

jan Horse program could send a (legal) message to a user process running at a

9

COVERT CHANNEL ANALYSIS GUIDELINE

lower integrity level IL2, thereby initiating the use of a covert channel. In this covert
channel, the Trojan Horse is the receiver of (illegal) lower integrity-level input and
the user process is the sender of this input.

The negative effect of exploiting this covert channel is that an untrusted user
logged in at a lower integrity level could control the accounts payable application
through illegal input, thereby producing checks for questionable reasons. One can
find similar examples where covert channels help violate any nondiscretionary integ-
rity boundary, not just those provided by lattice-based integrity models (e.g.,
[Biba77]). Similar examples exist because, just as in the case of TCBs protecting
sensitive information classified for secrecy reasons, not all applications running on
trusted bases protecting sensitive information for integrity reasons can be verified
and proved to be free of miscreant code.

(4) Dependency on TCB Specifications

To illustrate the dependency of covert channels on a system's TCB specifica-
tions (Descriptive or Formal Top-Level), we show that changes to the TCB specifica-
tions may eliminate existent, or introduce new, covert channels. The specifications
of a system's TCB include the specifications of primitives which operate on system
subjects, objects, access privileges, and security levels, and of access authorization,
object/subject creation/destruction rules, for example. Different interpretations of a
security model are illustrated in [Honeywel185a, Honeywel185b, Luckenbaugh86].
Changes to a TCB's specifications may not necessarily require a change of security
model or a change of the security model interpretation.

Example 1 - Object Allocation and Deallocation

As an example of the effect of TCB specification changes on covert channel ex-
istence (and vice versa), consider the case of an allocator of user-visible objects,
such as memory segments. The specifications of the allocator must contain explicit
"allocate/deallocate" (TCB) operations that can be invoked dynamically and that
subjects can share. A covert channel between the subjects using these user-visible
objects exists here [Schaefer77]. However, if the dynamic allocator and, conse-
quently, its specifications are changed to disallow the dynamic alloca-
tion/deallocation of objects in a shared memory area, the covert channel disappears.
Static object allocation in a shared memory area, or dynamic object allocation in a

10

COVERT CHANNEL DEFINITION AND CLASSIFICATION

memory area partitioned on a security level basis, need not change the interpreta-
tion of the system's subjects and objects; it only needs to change the specification
of the rules for the creation and destruction of a type of object. Although eliminating
dynamic sharing of resources and either preallocating objects or partitioning re-
sources on a per-security-level basis represent effective ways to remove some co-
vert channels, they are neither necessary nor possible in all cases because they
may cause performance losses.

Though this example illustrates the dependency of covert channels on TCB
specifications, it is not a general solution for eliminating covert channels. In fact, we
can find other examples to show that changing a TCB's specifications may actually
increase the number of covert channels.

Example 2 - Upgraded Directories

As a second example of the strong dependency between the covert channel
definition and TCB specifications, consider the creation and destruction of upgraded
directories in a system supporting mandatory security and using specifications of in-
terfaces similar to those of UNIX ®&. The notion of an upgraded directory
[Whitmore73, Schroeder77, Gligor87], its creation and removal, is illustrated in Fig-
ures 2-3(a)-(d).

In such a system, whenever a user attempts to remove an upgraded directory
from level Lh > Li where he is authorized to read and write it (as in Figure 2-3(c)),
the remove operation fails because it violates the mandatory authorization check
(the level of the removing process, Lh, must equal that of the parent directory, Li). In
contrast, the same remove operation invoked by a process at level Li < Lh suc-
ceeds (Figure 2-3(d)).

However, a covert channel appears because of the specification semantics of
the remove operation in UNIX "rmdir." This specification says a nonempty directory
cannot be removed. Therefore, if the above user logs in at level Li and tries to re-
move the upgraded directory from the higher level Lh, the user process can discover
whether any files or directories at level Lh > Li are linked to the upgraded directory.
Thus, another process at level Lh can transmit a bit of information to the user

*UNIX is a registered trademark of the UNIX Systems Laboratories.

11

COVERT CHANNEL ANALYSIS GUIDELINE

Create (UD, Lh, D)Proces --x----:, -/
' Upgraded Create (UD, Lh, D Upgraded

Al Directory UD Directory UD

level Lh level Lh

level Li, _ level Li

read
* ~Process IN _____

Directory D write Directory D

(a) Failed attempt to create (b) Successful creation of
an upgraded directory. an upgraded directory.

Remove (UD, Lh, D)

Prcs X Upgraded Remove (UD, Lh, D Upgraded

Directory UD Directory UD

level Lh level Lh

level Li level Li

read
____________Process _ _ _ _ _ _

Directory D write Directory D

(c) Failed attempt to remove (d) Successful removal of
an upgraded directory. an upgraded directory.

KEY:

successful operation
- ->- unsuccessful operation

Figure 2-3. Creation and Destruction of an Upgraded Directory
at Level Lh > Li

process at level Li < Lh by creating and removing (e.g., unlinking) files in the up-
graded directory. Figure 2-4 illustrates this concept.

12

COVERT CHANNEL DEFINITION AND CLASSIFICATION

PCreate (F, Lh, UD)
,, 7write ,. Upgraded

,! Error - - -Directory UD FlSError
" - ;- File F

level Lh

level Li -

"Process P write

Remove (UD, Lh, DI Directory D

(a) Unsuccessful removal of nonempty upgraded directory UD.

Remove (F, Lh, UD)
S, write Upgraded

/ Directory UD ---------------
No Error I ei -•-- -, File F ,

i level Lh

level Li

Process P write

Remove (UD, Lh, D Directory D

(b) Successful removal of empty upgraded directory UD.

KEY:
- successful operation

--X - unsuccessful operation

---- -- bit leakage

Figure 2-4. Covert Channel Caused by (UNIX) TCB Interface Conventions
(where Lh > L)

This covert channel would not appear if nonempty directories, and the directory
subtree started from them, could be removed (e.g., as in Multics [Whitmore73, Bell

13

COVERT CHANNEL ANALYSIS GUIDELINE

and La Padula76]). However, if the specification of directory removal is changed,
disallowing removal of nonempty directories (as in UNIX), the covert channel ap-
pears. One cannot eliminate the channel without modifying the UNIX user-visible in-
terface. This is an undesirable alternative given that user programs may depend on
the interface convention that nonempty UNIX directories cannot be removed. One
cannot invent a new TCB specification under which either directories are not user-
visible objects or in which the notion of upgraded directories disappears for similar
reasons; that is, the UNIX semantics must be modified.

2.2 CLASSIFICATION

2.2.1 Storage and Timing Channels

In practice, when covert channel scenarios of use are constructed, a distinction
between covert storage and timing channels [Lipner75, Schaefer77, NCSC TCSEC,
Hu9l, Wray9l] is made even though theoretically no fundamental distinction exists
between them. A potential covert channel is a storage channel if its scenario of use
"involves the direct or indirect writing of a storage location by one process [i.e., a
subject of I(M)] and the direct or indirect reading of the storage location by another
process." [NCSC TCSEC] A potential covert channel is a timing channel if its sce-
nario of use involves a process that "signals information to another by modulating its
own use of system resources (e.g., CPU time) in such a way that this manipulation
affects the real response time observed by the second process." [NCSC TCSEC] In
this guide, we retain the distinction between storage and timing channels exclusively
for consistency with the TCSEC.

In any scenario of covert channel exploitation, one must define the synchroniza-
tion relationship between the sender and the receiver of information. Thus, covert
channels can also be characterized by the synchronization relationship between the
sender and the receiver. In Figure 2-5, the sender and the receiver are asynchro-
nous processes that need to synchronize with each other to send and decode the
data. The purpose of synchronization is for one process to notify the other process it
has completed reading or writing a data variable. Therefore, a covert channel may
include not only a covert data variable but also two synchronization variables, one
for sender-receiver synchronization and the other for the receiver-sender synchroni-
zation. Any form of synchronous communication requires both the sender-receiver
and receiver-sender synchronization either implicitly or explicitly [Haberman72]. Note

14

COVERT CHANNEL DEFINITION AND CLASSIFICATION

Decoder 3 Sender S Encoderl:
R-S S-R

~~~~----------------L---------
r1

Encoder 2:
- S-R r

L----------- :9 :

Uh upi
r -- - - - - - i iI

*-. ..... I IIIi I
R-S Synch.:wA S-R Synch. '"w DataVariable , Variable Variable ,

1'jw --- -- w
- L----------------. U q%r-------------Ii ,:Decoder 2: L------... , S-R , " . . .JL -------I I

L------------

-Encoder 3: Receiver R Decoder 1 
S • @_evlR-S S-- S--------- j @Lve i......

Note: Processes Uh, . . . , Ui ... , Um, .. . , Un, .. Up, . . . , Uq may introduce noise
whenever they write on the variables, and may introduce delay whenever they do not
write on variables and run between the sender and the receiver.

Figure 2-5. Representation of a Covert Channel between Sender S and
Receiver R (where Lh > Li or Lh >< L)

that synchronization operations transfer information in both directions, namely from
sender to receiver and vice versa and, therefore, these operations may be indistin-
guishable from data transfers. Thus, the synchronization and data variables of Figure
2-5 may be indistinguishable.

Some security models, and some of their interpretations, allow receiver-sender
communication for subsets of all senders and receivers supported in the system.
For example, all mandatory security models implemented in commercial systems to
date allow information to flow from a low security level to a higher one. However,
sender-receiver synchronization may still need a synchronization variable to inform
the receiver of a bit transfer. A channel that does not include sender-receiver

15



COVERT CHANNEL ANALYSIS GUIDELINE

synchronization variables in a system allowing the receiver-sender transfer of mes-
sages is called a quasi-synchronous channel. The idea of quasi-synchronous chan-
nels was introduced by Schaefer in 1974 [Reed and Kanodia78].

In all patterns of sender-receiver synchronization, synchronization data may be
included in the data variable itself at the expense of some bandwidth degradation.
Packet-formatting bits in ring and Ethernet local area networks are examples of syn-
chronization data sent along with the information being transmitted. Thus, explicit
sender-receiver synchronization through a separate variable may be unnecessary.
Systems implementing mandatory security models allow messages to be sent from
the receiver to the sender whenever the security level of the sender dominates that
of the receiver. In these cases, explicit receiver-sender synchronization through a
separate variable may also be unnecessary.

The representation 'of a covert channel illustrated in Figure 2-5 can also be

used to distinguish between scenarios of storage and timing channels. For example,
a channel is a storage channel when the synchronization or data transfers between
senders and receivers U. storage variables, whereas a channel is a timing channel
when the synchronizatior'*or data transfers between senders and receivers include
the use of a common time reference (e.g., a clock). Both storage and timing chan-
nels use at least one storage variable for the transmission/sending of the information
being transferred. (Note that storage variables used for timing channels may be
ephemeral in the sense that the information transferred through them may be lost
after it is sensed by a receiver. We discuss this in more detail in Appendix A.) Also,
a timing channel may be converted into a storage channel by introducing explicit
storage variables for synchronization; and vice versa, a storage channel whose syn-
chronization variables are replaced by observations of a time reference becomes a
timing channel.

Based on the above definitions of storage and timing channels, the channels of
Examples 1 and 2 are storage channels. Examples 3 and 4 below illustrate scenar-
ios of timing channels. Appendix A presents additional examples of both storage
and timing channels.

16



COVERT CHANNEL DEFINITION AND CLASSIFICATION

Example 3 - Two Timing Channels Caused by CPU Scheduling

Quantum-based central processing unit (CPU) scheduling provides two typical
examples of timing channels (Figure 2-6). In the first example, the sender of infor-

Sender's 1 0 0 1
Quantum -0 .-- --

Use ' 'I I ~ I I I II
I I ~ I I I I I

Receiver's,: '
Quantum ' j L.--

Use ti t2 t3 t4 t 5 t6 t7  t8  time

{ < T and receives a 0Receiver computes t2 - t-= T and receives a 1

(a) CPU Quantum Channel [Huskamp78]

1 0 0 1
Sender iXX ; XSendr.. , 'XX ... - Receiver detects whether

I I time

sender runs at times ti,
II I I I

Receiver - XX:XX XX I XX, t 2,... , tn and receives
S 1 ,' time Os and 1 s

ti t2  t3  t4  t5

(b) CPU Interquantum Channel [Huskamp78]

Figure 2-6. Two CPU Timing Channels

mation varies the nonzero CPU time, which it uses during each quantum allocated to
it, to send different symbols. Fot 0 and 1 transmissions, the sender picks two
nonzero values for the CPU time used during a quantum, one representing a 0 and
the other a 1. This channel is called the "quantum-time channel" in [Huskamp78].
The receiver of the transmitted information decodes the transmitted information by
measuring its waiting time for the CPU. If only the receiver and the sender are in the
system, the receiver can decode each transmitted bit correctly with probability one
for some quantum sizes. A condition of this channel is that the sender be able to
block itself before the end of some quantum and reactivate itself before the

17



COVERT CHANNEL ANALYSIS GUIDELINE

beginning of the next quantum. The sender can meet this condition in a variety of
ways depending upon the size of the quantum (e.g., a typical range for quanta is
50-1000 milliseconds). For example, the sender may use an "alarm clock" to put it-
self to sleep for a fraction of the quantum time, or it may generate a page fault
(whose handling may take only a fraction of a quantum time also). A quantum of
100-200 milliseconds is sufficiently large for either case.

In the second example of Figure 2-6, the sender transmits information to the re-
ceiver by encoding symbols, say Os and is, in the time between two successive
CPU quanta. This channel is called the "interquantum-time channel" [Huskamp78],
and is shown in Figure 2-6(b) for the case where only the sender and the receiver
appear in the system. To send information, the sender and the receiver agree on
set times for sending the information. The transmission strategy is for the sender to
execute at time "ti" if the i-th bit is 1, and to block itself if the i-th bit is 0. The re-
ceiver can tell whether the sender executes at time ti because the receiver cannot
execute at the same time.

Example 4 - Other Timing Channels Caused by Shared Hardware Resources

The CPU scheduling channels of Example 3 appear because processes at dif-

ferent secrecy or integrity levels share a hardware resource, namely the CPU. Other
sharable hardware resources provide similar timing channels. For example, in any
multiprocessor design, hardware resources are shared. Multiple processors share
the same bus in shared-bus architectures, share the same memory ports in bus-per-
processor architectures, and share multiple busses and memory ports in crossbar-
switch architectures, as shown in Figure 2-7. In all multiprocessor architectures,
each instruction referencing the memory must lock the shared resource along the
CPU-memory interconnection path for at least one memory cycle. (The number of
cycles during which the shared resource must be locked depends on the instruction
semantics.) Hardware controllers of the shared resource mediate lock conflicts.
When the shared resource is no longer needed during the execution of the instruc-

tion, the resource is unlocked.

Whenever two processes at two different levels execute concurrently on two

separate processors, a covert channel appears that is similar to the CPU
interquantum channel presented in Example 3. That is, the sender and the receiver
processes establish by prior agreement that the sender process executes at time

18



COVERT CHANNEL DEFINITION AND CLASSIFICATION

P, @Lh Pn @ Li l

Processor 0 Processor n Processor 0 .... Processor n

Buss

Po0 PotmMemory Memory ... Memory

0 " ,='m 0,, (*Poesr a meCU

o
(a) Shared-Bus Architecture (b) Bus-per-CPU Architecture

KEY:

Processor 0 Processor n P1, R sc , P n = Processes
Lh,A , L = Security Levels

Memory , instrc i t h bit identifies shared resources

(r Processors can be CPUs
or 1/0 processors)

Switch Switch

(c) Crossbar-Switch Architecture

Figure 2-7. Examples of Shared Hardware Resources in Multiprocessor
Architectures

"ti" if the i-th bit is a 1 and does not execute (or at least does not execute memory-
referencing instructions) at time "ti" if the i-th bit is a 0. The receiver can execute a
standard set of memory-referencing instructions and time their execution. Thus, the
receiver can discover whether the sender executes at time "ti" by checking whether
the duration of the standard set of timed instructions was the expected 1 or longer.
As with the CPU channels of Example 3, these channels appear in any

19



COVERT CHANNEL ANALYSIS GUIDELINE

multiprocessor system regardless of the nondiscretionary model interpretation. Note

that adding per-processor caches, which helps decrease interprocessor contention
to shared hardware resources, cannot eliminate these channels. The sender and re-
ceiver processes can fill up their caches and continue to exploit interprocessor con-
tention to transmit information.

Appendix A provides other examples of timing channels, which also appear due
to the sharing of other hardware resources.

2.2.2 Noisy and Noiseless Channels

As with any communication channel, covert channels can be noisy or noiseless.
A channel is said to be noiseless if the symbols transmitted by the sender are the
same as those received by the receiver with probability 1. With covert channels,

each symbol is usually represented by one bit and, therefore, a covert channel is
noiseless if any bit transmitted by a sender is decoded correctly by the receiver with
probability 1. That is, regardless of the behavior of other user processes in the sys-
tem, the receiver is guaranteed to receive each bit transmitted by the sender.

The covert channel of Example 2 is a noiseless covert channel. The sender and

receiver can create and remove private upgraded directories, and no other user can
affect in any way whether the receiver receives the error/no_error signal. Thus, with
probability 1, the receiver can decode the bit value sent by the sender. In contrast,
the covert channels of Examples 3 and 4 are noisy channels because, whenever ex-
traneous processes-not just the sender and receiver-use the shared resource,
the bits transmitted by the sender may not be received correctly with probability 1
unless appropriate error-correcting codes are used. The error-correcting codes
used depend on the frequency of errors produced by the noise introduced by ex-
traneous processes (shown in Figure 2-5) and decrease the maximum channel
bandwidth. Thus, although error-correcting codes help change a noisy channel into
a noiseless one, the resulting channel will have a lower bandwidth than the similar
noise-free channel.

We introduce the term "bandwidth" here to denote the rate at which information
is transmitted through a channel. Bandwidth is originally a term used in analog com-
munication, measured in hertz, and related to information rate by the "sampling
theorem" (generally attributed to H. Nyquist although the theorem was in fact known

20



COVERT CHANNEL DEFINITION AND CLASSIFICATION

before Nyquist used it in communication theory [Haykin83]). Nyquist's sampling
theorem says that the information rate in bits (samples) per second is at most twice
the bandwidth in hertz of an analog signal created from a square wave. In a covert
channel context, bandwidth is given in bits/second rather than hertz, and is com-
monly used, in an abuse of terminology, as a synonym for information rate. This use
of the term "bandwidth" is also related to the notion of "capacity." The capacity of a
channel is its maximum possible error-free information rate in bits per second. By
using error-correcting codes, one can substantially reduce the error rates of noisy
channels. Error-correcting codes decrease the effective (I.e., error-free) information
rate relative to the noisy bit rate because they create redundancy in the transmitted
bit stream. Note that one may use error-detecting, rather than error-correcting,
codes in scenarios where the receiver can signal the sender for retransmissions. All
of these notions are standard in information theory [Gallager68].

2.2.3 Aggregated versus Nonaggregated Channels
Synchronization variables or information used by a sender and a receiver may

be used for operations on multiple data variables. Multiple data variables, which
could be independently used for covert channels, may be used as a group to amor-
tize the cost of synchronization (and, possibly, decoding) information. We say the re-
sulting channels are aggregated. Depending on how the .sender and receiver set,
read, and reset the data variables, channels can be aggregated serially, in parallel,
or in combinations of serial and parallel aggregation to yield optimal (maximum)
bandwidth.

If all data variables are set, reset, and read serially, then the channel is serially
aggregated. For example, if process Ph of Example 2 (Figure 2-4) uses multiple
upgraded directories designated "empty/nonempty" before transferring control to
process Pi, the signaling channel will be serially aggregated. Similarly, if all data vari-
ables are set, reset, and read in parallel by multiple senders and receivers, then the
channel is aggregated in parallel. Note that combinations of serial/parallel aggrega-
tion are also possible. For example, the data variables may be set in parallel but
read serially and vice versa. However, such combinations do not maximize band-
width and are, therefore, of limited interest.

Parallel aggregation of covert channel variables requires, for bandwidth maxi-
mization reasons, that the sender and receiver pairs be scheduled on different

21



COVERT CHANNEL ANALYSIS GUIDELINE

processors at the same time as a group, as illustrated in Figure 2-8 and in

Coscheduled n-sender-process group
SMi , ...

Channel 1 Channel 2 Channel n

Coscheduled n-receiver-process group

Note: M.,... (RMj,... RMn) are atoie Sndr(Receiver) messages.

Figure 2-8. Example of n Channels Aggregated in Parallel

[Gligor86]. Otherwise, the bandwidth of the parallel aggregation degrades to that of a
serially aggregated channel. The application programmer can strictly control group
scheduling of senders and receivers in multiprocessor operating systems such as
Medusa or StarOS [Osterhout8O, Jones79], which use "coscheduling" [Osterhout82].
Also group scheduling may be possible in multiple workstation systems such as
those used in LOCUS [Walker83] or Apollo [Leach83] whenever multiple worksta-
tions are available to a single application. In such systems, the analysis of individual
covert channels is insufficient to determine the maximum covert channel bandwidth.

Parallel aggregation of covert channels also requires, for bandwidth maximiza-
tion reasons, that the synchronization messages between all senders, and those be-
tween all receivers, be transmitted at a much higher speed than those between
senders and receivers. In practice, messages sent among senders, and those sent
among receivers, have negligible transmission delays compared to those used by
covert channels between senders and receivers. (Also, note that all messages
among senders and those among receivers are authorized messages.)

22



COVERT CHANNEL DEFINITION AND CLASSIFICATION

2.3 COVERT CHANNELS AND FLAWED TCB SPECIFICATIONS
An unresolved issue of covert channel definition is whether one can make a dis-

tinction between a covert channel and a flaw introduced by the implementation of
the security models. In other words, one would like to differentiate between imple-
mentation flaws and covert channels, if possible, for practical reasons. For example,
both implementors and evaluators of systems supporting mandatory access controls
in class B1 could then differentiate between flaws and covert channels. They could
determine whether instances of leakage of classified information must be eliminated
or otherwise handled or ignored until the B2 level and above.

The covert communication Definition 5 does not differentiate between covert
channels and interpretation or TCB specification flaws. This definition implies that, in
a fundamental sense, covert channels are in fact flaws of nondiscretionary access
control policy implementations, which are sometimes unavoidable in practice
regardless of the implementors' design (e.g., Example 3). However, the focus of that
definition on the notion of model implementation may help provide a criterion for dis-
tinguishing between different types of covert channels or implementation flaws.

To define a distinguishing criterion, let us review Examples 1-4. Examples 1 and
2 show that a change of the TCB specification can, in principle, eliminate the
existent covert channels in the specific systems under consideration. In contrast, Ex-
amples 3 and 4 show that as long as any system allows the sharing of the CPUs,
busses, memory, input/output (I/O) and other hardware resources, covert channels
will appear for any TCB specification. Furthermore, Example 2 illustrates that, in
many systems, a change of TCB specification that would eliminate a covert channel
may sometimes be impractical. That is, evidence may exist showing that
contemplated changes of the TCB specification would cause a significant loss of
compatibility with existing interfaces of a given system. Similar examples can be
found to illustrate that changes of TCB specifications may help eliminate other co-
vert channels (or flaws) at the expense of loss of functionality or performance in a
given system (e.g., Example 1).

The following criterion may help distinguish between different types of covert
channels (or flaws) in practice, thereby providing the necessary input for covert
channel, or flaw, handling at levels B1 versus levels B2-Al:

23



COVERT CHANNEL ANALYSIS GUIDELINE

" Fundamental Channels - A flaw of a TCB specification that causes covert

communication represents a fundamental channel if and only if that flaw ap-

pears under any interpretation of the nondiscretionary security model in any

operating system.

" Specific TCB Channels - A flaw of a TCB specification that causes covert

communication represents a specific TCB channel if and only if that flaw ap-

pears only under a specific interpretation of the nondiscretionary security

model in a given operating system.

* Unjustifiable Channels - A flaw of a TCB specification that causes covert com-

munication represents an unjustifiable channel if and only if that flaw appears

only under a specific but unjustifiable interpretation of a nondiscretionary se-

curity model in a given operating system. (The primary difference between

specific TCB and unjustifiable channels is in whether any evidence exists to

justify the existence of the respective channels.)

Using this criterion, the covert channels of Examples 3 and 4 are fundamental

channels, whereas those of Examples 1 and 2 are specific TCB channels.

The above criterion for distinguishing different types of covert channels (or

flaws) suggests the following differentiation policy for B1 and B2-A1 systems. For B1

systems, there should be no handling obligation of fundamental covert channels;

specific TCB channels should be handled under the policies in force for classes B2-

Al (as recommended in Chapter 5 of this guide); unjustifiable channels should be

eliminated by a change of TCB specification or model implementation for any

B-rated systems.

24


